140

9 Biodegradation of Plastics by Microorganisms

26 Takehara, I., Fujii, T., Tanimoto, Y. et al. (2018). Metabolic pathway of

6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobac-

ter sp. KI72: identification of the enzymes responsible for the conversion of

6-aminohexanoate to adipate. Applied Microbiology and Biotechnology 102 (2):

801–814. https://doi.org/10.1007/s00253-017-8657-y.

27 Zumstein, M.T., Rechsteiner, D., Roduner, N. et al. (2017). Enzymatic hydrolysis

of polyester thin films at the nanoscale: effects of polyester structure and enzyme

active-site accessibility. Environmental Science & Technology 51 (13): 7476–7485.

https://doi.org/10.1021/acs.est.7b01330.

28 Perz, V., Zumstein, M.T., Sander, M. et al. (2015). Biomimetic approach to

enhance enzymatic hydrolysis of the synthetic polyester poly(1,4-butylene

adipate): fusing binding modules to esterases. Biomacromolecules 16 (12):

3889–3896. https://doi.org/10.1021/acs.biomac.5b01219.

29 Ronkvist, Å.M., Xie, W., Lu, W. et al. (2009). Cutinase-catalyzed hydrolysis of

poly(ethylene terephthalate). Macromolecules 42 (14): 5128–5138. https://doi.org/

10.1021/ma9005318.

30 Sulaiman, S., Yamato, S., Kanaya, E. et al. (2012). Isolation of a novel cutinase

homolog with polyethylene terephthalate-degrading activity from leaf-branch

compost by using a metagenomic approach. Applied and Environmental Microbi-

ology 78 (5): 1556–1562. https://doi.org/10.1128/AEM.06725-11.

31 Eberl, A., Heumann, S., Brückner, T. et al. (2009). Enzymatic surface hydrolysis

of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase

and cutinase in the presence of surface active molecules. Journal of Biotechnology

143 (3): 207–212. https://doi.org/10.1016/j.jbiotec.2009.07.008.

32 Carniel, A., Valoni, É., Junior, J.N. et al. (2017). Lipase from Candida antarctica

(CALB) and cutinase from Humicola insolens act synergistically for PET hydrol-

ysis to terephthalic acid. Process Biochemistry 59: 84–90. https://doi.org/10.1016/j

.procbio.2016.07.023.

33 Billig, S., Oeser, T., Birkemeyer, C. et al. (2010). Hydrolysis of cyclic

poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida

fusca KW3. Applied Microbiology and Biotechnology 87 (5): 1753–1764. https://doi

.org/10.1007/s00253-010-2635-y.

34 Matsumiya, Y., Murata, N., Tanabe, E. et al. (2010). Isolation and characteriza-

tion of an ether-type polyurethane-degrading micro-organism and analysis of

degradation mechanism by Alternaria sp. Journal of Applied Microbiology 108 (6):

1946–1953. https://doi.org10.1111/j.1365-2672.2009.04600.x.

35 Ruiz-Dueñas, F.J. and Martínez, Á.T. (2009). Microbial degradation of lignin:

how a bulky recalcitrant polymer is efficiently recycled in nature and how we

can take advantage of this. Microbial Biotechnology 2 (2): 164–177. https://doi

.org/10.1111/j.1751-7915.2008.00078.x.

36 Ehara, K., Iiyoshi, Y., Tsutsumi, Y. et al. (2000). Polyethylene degradation by

manganese peroxidase in the absence of hydrogen peroxide. Journal of Wood

Science 46 (2): 180–183.

37 Skariyachan, S., Manjunatha, V., Sultana, S. et al. (2016). Novel bacterial con-

sortia isolated from plastic garbage processing areas demonstrated enhanced